Tool Orientation Control for 5-axis CNC Machining

Chang Yong Han

Abstract

We consider a 5-axis CNC machine whose tool axis maintains a fixed angle with respect to the surface normal as the machine tool cuts a given path on a smooth surface. The tool axis $a(\xi)$ lies on a cone of constant angle ψ about the surface normal $n(\xi)$ at each point of the path, but its azimuthal position on this cone remains indeterminate. Geometrically speaking, given a curve $n(\xi)$ on the unit sphere, we have to choose $a(\xi)$ among such curves on the sphere that satisfy $a(\xi) \cdot n(\xi) = \cos \psi$. We discuss several schemes to resolve the indeterminacy by focusing on the minimization of the residual motion of tool axis. The first method is to force the tangential component of $a(\xi)$ to the surface to be parallel along the path, in other words requiring the component to be rotation-minimizing with respect to $n(\xi)$. The second method is to find $a(\xi)$ on the unit sphere with minimal length under the aforementioned constraint, which is formulated in terms of variational calculus. Finally we introduce a tractrix-like curve on the sphere that orient itself in such a way that locally minimizes its length. Although this curve does not achieve globally minimal length, its simple derivation and length-minimizing property can be more appealing in practice.

Chang Yong Han, Kyung Hee University.